TY - GEN
T1 - Pixel-aware deep function-mixture network for spectral super-resolution
AU - Zhang, Lei
AU - Lang, Zhiqiang
AU - Wang, Peng
AU - Wei, Wei
AU - Liao, Shengcai
AU - Shao, Ling
AU - Zhang, Yanning
N1 - Publisher Copyright:
Copyright c 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Spectral super-resolution (SSR) aims at generating a hyperspectral image (HSI) from a given RGB image. Recently, a promising direction is to learn a complicated mapping function from the RGB image to the HSI counterpart using a deep convolutional neural network. This essentially involves mapping the RGB context within a size-specific receptive field centered at each pixel to its spectrum in the HSI. The focus thereon is to appropriately determine the receptive field size and establish the mapping function from RGB context to the corresponding spectrum. Due to their differences in category or spatial position, pixels in HSIs often require different-sized receptive fields and distinct mapping functions. However, few efforts have been invested to explicitly exploit this prior. To address this problem, we propose a pixel-aware deep function-mixture network for SSR, which is composed of a new class of modules, termed function-mixture (FM) blocks. Each FM block is equipped with some basis functions, i.e., parallel subnets of different-sized receptive fields. Besides, it incorporates an extra subnet as a mixing function to generate pixel-wise weights, and then linearly mixes the outputs of all basis functions with those generated weights. This enables us to pixel-wisely determine the receptive field size and the mapping function. Moreover, we stack several such FM blocks to further increase the flexibility of the network in learning the pixel-wise mapping. To encourage feature reuse, intermediate features generated by the FM blocks are fused in late stage, which proves to be effective for boosting the SSR performance. Experimental results on three benchmark HSI datasets demonstrate the superiority of the proposed method.
AB - Spectral super-resolution (SSR) aims at generating a hyperspectral image (HSI) from a given RGB image. Recently, a promising direction is to learn a complicated mapping function from the RGB image to the HSI counterpart using a deep convolutional neural network. This essentially involves mapping the RGB context within a size-specific receptive field centered at each pixel to its spectrum in the HSI. The focus thereon is to appropriately determine the receptive field size and establish the mapping function from RGB context to the corresponding spectrum. Due to their differences in category or spatial position, pixels in HSIs often require different-sized receptive fields and distinct mapping functions. However, few efforts have been invested to explicitly exploit this prior. To address this problem, we propose a pixel-aware deep function-mixture network for SSR, which is composed of a new class of modules, termed function-mixture (FM) blocks. Each FM block is equipped with some basis functions, i.e., parallel subnets of different-sized receptive fields. Besides, it incorporates an extra subnet as a mixing function to generate pixel-wise weights, and then linearly mixes the outputs of all basis functions with those generated weights. This enables us to pixel-wisely determine the receptive field size and the mapping function. Moreover, we stack several such FM blocks to further increase the flexibility of the network in learning the pixel-wise mapping. To encourage feature reuse, intermediate features generated by the FM blocks are fused in late stage, which proves to be effective for boosting the SSR performance. Experimental results on three benchmark HSI datasets demonstrate the superiority of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85092893725&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:85092893725
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 12821
EP - 12828
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -