Photonic hooks from Janus microcylinders

Guoqiang Gu, Liyang Shao, Jun Song, Junle Qu, Kai Zheng, Xingliang Shen, Zeng Peng, Jie Hu, Xiaolong Chen, Ming Chen, Qiang Wu

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Recently, a type of curved light beams, photonic hooks (PHs), was theoretically predicted and experimentally observed. The production of photonic hook (PH) is due to the breaking of structural symmetry of a plane-wave illuminated microparticle. Herein, we presented and implemented a new approach of utilizing the symmetry-broken of the microparticles in material composition for the generation of PHs from Janus microcylinders. Finite element method–based numerical simulation and energy flow–represented theoretical analysis were used to investigate the field distribution characteristics and formation mechanism of the PHs. The full width at half-maximum (FWHM) of the PH (∼0.29λ) is smaller than the FWHM of the photonic nanojet (∼0.35λ) formed from a circular microcylinder with the same geometric radius. By changing the refractive index contrasts between upper and lower half-cylinders or rotating the Janus microcylinder relative to the central axis, the shape profiles of the PHs can be efficiently modulated. The tunability of the PHs through simple stretching or compression operations for the Janus microcylinder constituted by one solid inorganic half-cylinder and the other flexible polymer half-cylinder was studied and discussed as well.

Original languageEnglish
Pages (from-to)37771-37780
Number of pages10
JournalOptics Express
Volume27
Issue number26
DOIs
StatePublished - 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Photonic hooks from Janus microcylinders'. Together they form a unique fingerprint.

Cite this