Oxidation behavior of Hastelloy C-2000 superalloy at 800 °c and 1000 °c

Liang Yuan, Rui Hu, Tie Bang Zhang, Jin Shan Li, Xiao Qing Zhang

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The oxidation behavior of Hastelloy C-2000 alloy was investigated in air at 800 °C and 1000 °C for 100 h, respectively. Oxidation kinetics and oxide scales morphologies were examined by mass gain measurement, scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The oxidation behavior of the alloy approximately follows a parabolic rate law. Moreover, annealing twins defect structure in matrix deteriorates the oxidation resistance of alloy due to the improvement of diffusion rates for alloying elements and oxygen atoms. At 800 °C, the microstructure is primarily composed of NiO and Cr1.3Fe0.7O6 and the initial annealing twins structure is visible and Mo-rich phases are emerged to approach boundary of oxide scales. At 1000 °C, however, the morphology microstructure of oxide scales consists of oxide particle with fine Cr oxides and large Ni oxides by inlaying each other, whilst Mo-rich phases hardly appear closing to the interface of oxide scales.

Original languageEnglish
Pages (from-to)354-362
Number of pages9
JournalTransactions of Nonferrous Metals Society of China (English Edition)
Volume25
Issue number1
DOIs
StatePublished - 1 Jan 2015

Keywords

  • annealing twins
  • Hastelloy C-2000 alloy
  • Mo-rich phase
  • oxidation behavior
  • parabolic rate law

Fingerprint

Dive into the research topics of 'Oxidation behavior of Hastelloy C-2000 superalloy at 800 °c and 1000 °c'. Together they form a unique fingerprint.

Cite this