Abstract
Nickel oxide (NiOx) is a promising hole transport material in inverted organic-inorganic metal halide perovskite solar cells. However, its low intrinsic conductivity hinders its further improvement in device performance. Here, we employ a trimercapto-s-triazine trisodium salt (TTTS) as a chelating agent of Ni2+ in the NiOx layer to improve its conductivity. Due to the electron-deficient triazine ring, the TTTS complexes with Ni2+ in NiOx via a strong Ni2+-N coordination bond and increases the ratio of Ni3+:Ni2+. The increased Ni3+ concentration adjusts the band structure of NiOx, thus enhancing hole density and mobility, eventually improving the intrinsic conductivity of NiOx. As a result, the device with TTTS modification displays a champion power conversion efficiency (PCE) of 22.81%. The encapsulated device based on a modified-NiOx layer maintains 94% of its initial power output at the maximum power point and continuous one-sun illumination for 1000 h at 45 °C. In addition, the unencapsulated target devices also maintain 92% at 60 ± 5% relative humidity and 25 °C in the air for 5000 h; and 91% at 85 °C in a nitrogen atmosphere for 1000 h. The research provides an effective strategy to enhance PCE and stability of inverted PSCs via modifying NiOx films with triazine molecule.
Original language | English |
---|---|
Article number | 2200422 |
Journal | Solar RRL |
Volume | 6 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2022 |
Keywords
- additive engineering
- device stability
- intrinsic conductivity
- inverted perovskite solar cells
- nickel oxide