TY - JOUR
T1 - One pot-economical fabrication of molecularly imprinted membrane employing carbon nanospheres sol coagulation bath with specific separation and advanced antifouling performances
AU - Gao, Jia
AU - Zhou, Shi
AU - Hou, Zhiqiang
AU - Zhang, Qi
AU - Meng, Minjia
AU - Li, Chunxiang
AU - Wu, Yilin
AU - Yan, Yongsheng
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/7/1
Y1 - 2019/7/1
N2 - In this paper, one pot-economical approach for in-situ modification of enoxacin (EXC) imprinted nanocomposite membrane was developed by employing carbon nanosphere sol (CNS) as coagulation bath during phase inversion process for increasingly antifouling property. Using polydopamine (pDA) as hydrophilic coating layer and second-reaction platform, the CNS based biomimetic molecularly imprinted nanocomposite membranes (CBMIMs) were then obtained which used EXC as the target molecule for specific adsorption and separation EXC from the sewage. The imprinting polymer layer was highly hydrophilic, which advanced antifouling performance to avoid the adsorption of contaminant protein. Using EXC as template, the optimal fabrication conditions on performances and properties of CBMIMs were studied. Isothermal adsorption curves, adsorption kinetics and rebinding selectivity were investigated to well explain the selectivity adsorption mechanism of imprinted membranes on EXC. The CBMIMs presented highly selective specificity, short kinetic equilibrium time and preferable rebinding capacity for EXC. The rebinding ability and imprinted factor (β) of CBMIMs could reach 32.10 mg g−1 and 3.15, respectively, which presented various highly favorable features, including high rebinding strength and excellent selective performance. Furthermore, the adsorption of actual environmental sewage by CBMIMs was investigated, which highlighted the advantage of CBMIMs. Several favorable performances of CBMIMs also provided further application for sewage treatment in the future.
AB - In this paper, one pot-economical approach for in-situ modification of enoxacin (EXC) imprinted nanocomposite membrane was developed by employing carbon nanosphere sol (CNS) as coagulation bath during phase inversion process for increasingly antifouling property. Using polydopamine (pDA) as hydrophilic coating layer and second-reaction platform, the CNS based biomimetic molecularly imprinted nanocomposite membranes (CBMIMs) were then obtained which used EXC as the target molecule for specific adsorption and separation EXC from the sewage. The imprinting polymer layer was highly hydrophilic, which advanced antifouling performance to avoid the adsorption of contaminant protein. Using EXC as template, the optimal fabrication conditions on performances and properties of CBMIMs were studied. Isothermal adsorption curves, adsorption kinetics and rebinding selectivity were investigated to well explain the selectivity adsorption mechanism of imprinted membranes on EXC. The CBMIMs presented highly selective specificity, short kinetic equilibrium time and preferable rebinding capacity for EXC. The rebinding ability and imprinted factor (β) of CBMIMs could reach 32.10 mg g−1 and 3.15, respectively, which presented various highly favorable features, including high rebinding strength and excellent selective performance. Furthermore, the adsorption of actual environmental sewage by CBMIMs was investigated, which highlighted the advantage of CBMIMs. Several favorable performances of CBMIMs also provided further application for sewage treatment in the future.
KW - Carbon nanospheres
KW - CNS coagulation bath
KW - Enoxacin
KW - Molecularly imprinted membranes
KW - Selective separation
UR - http://www.scopus.com/inward/record.url?scp=85061965710&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2019.01.079
DO - 10.1016/j.seppur.2019.01.079
M3 - 文章
AN - SCOPUS:85061965710
SN - 1383-5866
VL - 218
SP - 59
EP - 69
JO - Separation and Purification Technology
JF - Separation and Purification Technology
ER -