Abstract
Organic–inorganic lead halide perovskites have shown great future for application in solar cells owing to their exceptional optical and electronic properties. To achieve high-performance perovskite solar cells, a perovskite light absorbing layer with large grains is desirable in order to minimize grain boundaries and recombination during the operation of the device. Herein, a simple yet efficient approach is developed to synthesize perovskite films consisting of monolithic-like grains with micrometer size through in situ deposition of octadecylamine functionalized single-walled carbon nanotubes (ODA-SWCNTs) onto the surface of the perovskite layer. The ODA-SWCNTs form a capping layer that controls the evaporation rate of organic solvents in the perovskite film during the postthermal treatment. This favorable morphology in turn dramatically enhances the short-circuit current density of the perovskite solar cells and almost completely eliminates the hysteresis. A maximum power conversion efficiency of 16.1% is achieved with an ODA-SWCNT incorporated planar solar cell using (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 as light absorber. Furthermore, the perovskite solar cells with ODA-SWCNT demonstrate extraordinary stability with performance retention of 80% after 45 d stability testing under high humidity (60–90%) environment. This work opens up a new avenue for morphology manipulation of perovskite films and enhances the device stability using carbon material.
Original language | English |
---|---|
Article number | 1705545 |
Journal | Advanced Functional Materials |
Volume | 28 |
Issue number | 10 |
DOIs | |
State | Published - 7 Mar 2018 |
Externally published | Yes |
Keywords
- grain growth
- hysteresis
- perovskite solar cells
- single-walled carbon nanotubes