Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: Thermal analysis

Michele Chiumenti, Xin Lin, Miguel Cervera, Wei Lei, Yuxiang Zheng, Weidong Huang

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

Purpose - This paper aims to address the numerical simulation of additive manufacturing (AM) processes. The numerical results are compared with the experimental campaign carried out at State Key Laboratory of Solidification Processing laboratories, where a laser solid forming machine, also referred to as laser engineered net shaping, is used to fabricate metal parts directly from computer-aided design models. Ti-6Al-4V metal powder is injected into the molten pool created by a focused, high-energy laser beam and a layer of added material is sinterized according to the laser scanning pattern specified by the user. Design/methodology/approach - The numerical model adopts an apropos finite element (FE) activation technology, which reproduces the same scanning pattern set for the numerical control system of the AM machine. This consists of a complex sequence of polylines, used to define the contour of the component, and hatches patterns to fill the inner section. The full sequence is given through the common layer interface format, a standard format for different manufacturing processes such as rapid prototyping, shape metal deposition or machining processes, among others. The result is a layer-by-layer metal deposition which can be used to build-up complex structures for components such as turbine blades, aircraft stiffeners, cooling systems or medical implants, among others. Findings - Ad hoc FE framework for the numerical simulation of the AM process by metal deposition is introduced. Description of the calibration procedure adopted is presented. Originality/value - The objectives of this paper are twofold: firstly, this work is intended to calibrate the software for the numerical simulation of the AM process, to achieve high accuracy. Secondly, the sensitivity of the numerical model to the process parameters and modeling data is analyzed.

Original languageEnglish
Pages (from-to)448-463
Number of pages16
JournalRapid Prototyping Journal
Volume23
Issue number2
DOIs
StatePublished - 2017

Keywords

  • Additive manufacturing (AM) process
  • Blown powder technology
  • FE modeling
  • Laser solid forming (LSF)
  • Metal deposition (MD) process
  • Thermo-mechanical analysis

Fingerprint

Dive into the research topics of 'Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: Thermal analysis'. Together they form a unique fingerprint.

Cite this