NEURAL STOCHASTIC DIFFERENTIAL EQUATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION

Xiao Zhang, Wei Wei, Lei Zhang, Chen Ding

Research output: Contribution to conferencePaperpeer-review

3 Scopus citations

Abstract

Hyperspectral image (HSI) classification is an essental task of HSI analysis, which aims to assign each pixel a pre-defined class label. Though deep learning based methods dominate the HSI classification methods to date, the existing methods seldom consider how to directly model the uncertainty broadly exists in the HSI applications, which impedes their usage in real applications. To address this problem, we propose to directly model the uncertainty into the deep learning based HSI classification model and construct a specific network based on stochastic differential equation (SDE). The constructed network consists two subnets, in which one is utilized to well fit the HSI classification task and one is exploited to capture the uncertainty within the HSI classification. The constructed network can better depict the uncertainty, and thus result in better HSI classification performance. Experimental results demonstrate the effectiveness of the constructed model for HSI classification.

Original languageEnglish
Pages2357-2360
Number of pages4
DOIs
StatePublished - 2021
Event2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, Belgium
Duration: 12 Jul 202116 Jul 2021

Conference

Conference2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
Country/TerritoryBelgium
CityBrussels
Period12/07/2116/07/21

Keywords

  • deep learning
  • differential equation
  • HSI classification

Fingerprint

Dive into the research topics of 'NEURAL STOCHASTIC DIFFERENTIAL EQUATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION'. Together they form a unique fingerprint.

Cite this