Multi-view clustering and semi-supervised classification with adaptive neighbours

Feiping Nie, Guohao Cai, Xuelong Li

Research output: Contribution to conferencePaperpeer-review

546 Scopus citations

Abstract

Due to the efficiency of learning relationships and complex structures hidden in data, graph-oriented methods have been widely investigated and achieve promising performance in multi-view learning. Generally, these learning algorithms construct informative graph for each view or fuse different views to one graph, on which the following procedure are based. However, in many real world dataset, original data always contain noise and outlying entries that result in unreliable and inaccurate graphs, which cannot be ameliorated in the previous methods. In this paper, we propose a novel multi-view learning model which performs clustering/semi-supervised classification and local structure learning simultaneously. The obtained optimal graph can be partitioned into specific clusters directly. Moreover, our model can allocate ideal weight for each view automatically without additional weight and penalty parameters. An efficient algorithm is proposed to optimize this model. Extensive experimental results on different real-world datasets show that the proposed model outperforms other state-of-the-art multi-view algorithms.

Original languageEnglish
Pages2408-2414
Number of pages7
StatePublished - 2017
Event31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States
Duration: 4 Feb 201710 Feb 2017

Conference

Conference31st AAAI Conference on Artificial Intelligence, AAAI 2017
Country/TerritoryUnited States
CitySan Francisco
Period4/02/1710/02/17

Fingerprint

Dive into the research topics of 'Multi-view clustering and semi-supervised classification with adaptive neighbours'. Together they form a unique fingerprint.

Cite this