TY - GEN
T1 - Multi-Speaker Expressive Speech Synthesis via Multiple Factors Decoupling
AU - Zhu, Xinfa
AU - Lei, Yi
AU - Song, Kun
AU - Zhang, Yongmao
AU - Li, Tao
AU - Xie, Lei
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - This paper aims to synthesize the target speaker's speech with desired speaking style and emotion by transferring the style and emotion from reference speech recorded by other speakers. We address this challenging problem with a two-stage framework composed of a text-to-style-and-emotion (Text2SE) module and a style-and- emotion-to-wave (SE2Wave) module, bridging by neural bottleneck (BN) features. To further solve the multi-factor (speaker timbre, speaking style and emotion) decoupling problem, we adopt the multi-label binary vector (MBV) and mutual information (MI) minimization to respectively discretize the extracted embeddings and disentangle these highly entangled factors in both Text2SE and SE2Wave modules. Moreover, we introduce a semi-supervised training strategy to leverage data from multiple speakers, including emotion-labeled data, style-labeled data, and unlabeled data. To better transfer the fine-grained expression from references to the target speaker in non-parallel transfer, we introduce a reference-candidate pool and propose an attention-based reference selection approach. Extensive experiments demonstrate the good design of our model.
AB - This paper aims to synthesize the target speaker's speech with desired speaking style and emotion by transferring the style and emotion from reference speech recorded by other speakers. We address this challenging problem with a two-stage framework composed of a text-to-style-and-emotion (Text2SE) module and a style-and- emotion-to-wave (SE2Wave) module, bridging by neural bottleneck (BN) features. To further solve the multi-factor (speaker timbre, speaking style and emotion) decoupling problem, we adopt the multi-label binary vector (MBV) and mutual information (MI) minimization to respectively discretize the extracted embeddings and disentangle these highly entangled factors in both Text2SE and SE2Wave modules. Moreover, we introduce a semi-supervised training strategy to leverage data from multiple speakers, including emotion-labeled data, style-labeled data, and unlabeled data. To better transfer the fine-grained expression from references to the target speaker in non-parallel transfer, we introduce a reference-candidate pool and propose an attention-based reference selection approach. Extensive experiments demonstrate the good design of our model.
KW - emotion transfer
KW - Expressive speech synthesis
KW - multiple factors decoupling
KW - style transfer
KW - two-stage
UR - http://www.scopus.com/inward/record.url?scp=85168207415&partnerID=8YFLogxK
U2 - 10.1109/ICASSP49357.2023.10095776
DO - 10.1109/ICASSP49357.2023.10095776
M3 - 会议稿件
AN - SCOPUS:85168207415
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
BT - ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Y2 - 4 June 2023 through 10 June 2023
ER -