Multi-scale and discriminative part detectors based features for multi-label image classification

Gong Cheng, Decheng Gao, Yang Liu, Junwei Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Convolutional neural networks (CNNs) have shown their promise for image classification task. However, global CNN features still lack geometric invariance for addressing the problem of intra-class variations and so are not optimal for multi-label image classification. This paper proposes a new and effective framework built upon CNNs to learn Multi-scale and Discriminative Part Detectors (MsDPD)-based feature representations for multi-label image classification. Specifically, at each scale level, we (i) first present an entropy-rank based scheme to generate and select a set of discriminative part detectors (DPD), and then (ii) obtain a number of DPD-based convolutional feature maps with each feature map representing the occurrence probability of a particular part detector and learn DPD-based features by using a task-driven pooling scheme. The two steps are formulated into a unified framework by developing a new objective function, which jointly trains part detectors incrementally and integrates the learning of feature representations into the classification task. Finally, the multi-scale features are fused to produce the predictions. Experimental results on PASCAL VOC 2007 and VOC 2012 datasets demonstrate that the proposed method achieves better accuracy when compared with the existing state-of-the-art multi-label classification methods.

Original languageEnglish
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages649-655
Number of pages7
ISBN (Electronic)9780999241127
DOIs
StatePublished - 2018
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: 13 Jul 201819 Jul 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Conference

Conference27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Country/TerritorySweden
CityStockholm
Period13/07/1819/07/18

Fingerprint

Dive into the research topics of 'Multi-scale and discriminative part detectors based features for multi-label image classification'. Together they form a unique fingerprint.

Cite this