Microstructure and Mechanical Properties of Graphene Reinforced K418 Superalloy by Selective Laser Melting

Yongxin Lu, Fan Luo, Zhen Chen, Jian Cao, Kai Song, Lei Zhao, Xueli Xu, Hongduo Wang, Wenya Li

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

In order to obtain the superalloy with excellent properties, graphene reinforced K418 nickel base superalloy (GNPs/K418 composite) was prepared by selective laser melting technique in this study. Through systematically comparing and analyzing the microstructure and mechanical property of K418 superalloy and GNPs/K418 composite, it is found that the percentage of small-diameter grain (≤ 15 μm) increased from 84% to 90%, and the max strength of grain orientation (<001>) reduce from 5.76 to 4.17 due to the addition of GNPs. And GNPs can also improve the height and the full width at the half peak of the strong diffraction peak of GNPs/K418 composite. Besides, GNPs/K418 composite is a kind of sandwiched structure, which is consist of GNPs, carbides, and K418 matrix. Therefore, the hardness of the GNPs/K418 composite is 4.1% and 6.9% higher than that of the K418 matrix in the transverse and vertical direction, respectively. The room temperature tensile strength of the GNPs/K418 composite is 9% higher than that of the K418 matrix. And the 600 °C and 900 °C tensile strengths of the GNPs/K418 composite are 7.6% and 10.4% higher than that of the K418 matrix, respectively. It is inferred that the effect of graphene on K418 matrix strengthening is mainly fine grain strengthening and Orowan strengthening. However, the elongation rate of the composite material is reduced, which is attributed to crack sprouting at the interface between the matrix and GNPs under high stress.

Original languageEnglish
Pages (from-to)1477-1493
Number of pages17
JournalActa Metallurgica Sinica (English Letters)
Volume35
Issue number9
DOIs
StatePublished - Sep 2022

Keywords

  • Graphene
  • K418 nickel base superalloy
  • Selective laser melting
  • Tensile properties

Fingerprint

Dive into the research topics of 'Microstructure and Mechanical Properties of Graphene Reinforced K418 Superalloy by Selective Laser Melting'. Together they form a unique fingerprint.

Cite this