TY - GEN
T1 - Memory-Augmented temporal dynamic learning for action recognition
AU - Yuan, Yuan
AU - Wang, Dong
AU - Wang, Qi
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - Human actions captured in video sequences contain two crucial factors for action recognition, i.e., visual appearance and motion dynamics. To model these two aspects, Convolutional and Recurrent Neural Networks (CNNs and RNNs) are adopted in most existing successful methods for recognizing actions. However, CNN based methods are limited in modeling long-term motion dynamics. RNNs are able to learn temporal motion dynamics but lack effective ways to tackle unsteady dynamics in long-duration motion. In this work, we propose a memory-augmented temporal dynamic learning network, which learns to write the most evident information into an external memory module and ignore irrelevant ones. In particular, we present a differential memory controller to make a discrete decision on whether the external memory module should be updated with current feature. The discrete memory controller takes in the memory history, context embedding and current feature as inputs and controls information flow into the external memory module. Additionally, we train this discrete memory controller using straight-through estimator. We evaluate this end-to-end system on benchmark datasets (UCF101 and HMDB51) of human action recognition. The experimental results show consistent improvements on both datasets over prior works and our baselines.
AB - Human actions captured in video sequences contain two crucial factors for action recognition, i.e., visual appearance and motion dynamics. To model these two aspects, Convolutional and Recurrent Neural Networks (CNNs and RNNs) are adopted in most existing successful methods for recognizing actions. However, CNN based methods are limited in modeling long-term motion dynamics. RNNs are able to learn temporal motion dynamics but lack effective ways to tackle unsteady dynamics in long-duration motion. In this work, we propose a memory-augmented temporal dynamic learning network, which learns to write the most evident information into an external memory module and ignore irrelevant ones. In particular, we present a differential memory controller to make a discrete decision on whether the external memory module should be updated with current feature. The discrete memory controller takes in the memory history, context embedding and current feature as inputs and controls information flow into the external memory module. Additionally, we train this discrete memory controller using straight-through estimator. We evaluate this end-to-end system on benchmark datasets (UCF101 and HMDB51) of human action recognition. The experimental results show consistent improvements on both datasets over prior works and our baselines.
UR - http://www.scopus.com/inward/record.url?scp=85085608240&partnerID=8YFLogxK
U2 - 10.1609/aaai.v33i01.33019167
DO - 10.1609/aaai.v33i01.33019167
M3 - 会议稿件
AN - SCOPUS:85085608240
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 9167
EP - 9175
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -