Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation

Mochu Xiang, Jing Zhang, Nick Barnes, Yuchao Dai

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Effectively measuring and modeling the reliability of a trained model is essential to the real-world deployment of monocular depth estimation (MDE) models. However, the intrinsic ill-posedness and ordinal-sensitive nature of MDE pose major challenges to the estimation of uncertainty degree of the trained models. On the one hand, utilizing current uncertainty modeling methods may increase memory consumption and usually take more time. On the other hand, measuring the uncertainty based on model accuracy can also be problematic, where uncertainty reliability and prediction accuracy are not well decoupled. In this paper, we propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions originating from the depth probability volume and its extensions, and to assess it more fairly with more comprehensive metrics. By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability, and can be further improved when combined with ensemble or sampling methods. A series of experiments demonstrate the effectiveness of our methods. Code and results are available at https://github.com/npucvr/MDEUncertainty.

Original languageEnglish
Pages (from-to)5716-5727
Number of pages12
JournalIEEE Transactions on Circuits and Systems for Video Technology
Volume34
Issue number7
DOIs
StatePublished - 2024

Keywords

  • depth probability volume
  • Monocular depth estimation
  • ordinal-sensitive nature
  • uncertainty modeling

Fingerprint

Dive into the research topics of 'Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation'. Together they form a unique fingerprint.

Cite this