Long Short-Term Graph Memory Against Class-imbalanced Over-smoothing

Liang Yang, Jiayi Wang, Tingting Zhang, Dongxiao He, Chuan Wang, Yuanfang Guo, Xiaochun Cao, Bingxin Niu, Zhen Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Most Graph Neural Networks (GNNs) follow the message-passing scheme. Residual connection is an effective strategy to tackle GNNs' over-smoothing issue and performance reduction issue on non-homophilic networks. Unfortunately, the coarse-grained residual connection still suffers from class-imbalanced over-smoothing issue, due to the fixed and linear combination of topology and attribute in node representation learning. To make the combination flexible to capture complicated relationship, this paper reveals that the residual connection needs to be node-dependent, layer-dependent, and related to both topology and attribute. To alleviate the difficulty in specifying complicated relationship, this paper presents a novel perspective on GNNs, i.e., the representations of one node in different layers can be seen as a sequence of states. From this perspective, existing residual connections are not flexible enough for sequence modeling. Therefore, a novel node-dependent residual connection, i.e., Long Short-Term Graph Memory Network (LSTGM) is proposed to employ Long Short-Term Memory (LSTM), to model the sequence of node representation. To make the graph topology fully employed, LSTGM innovatively enhances the updated memory and three gates with graph topology. A speedup version is also proposed for effective training. Experimental evaluations on real-world datasets demonstrate their effectiveness in preventing over-smoothing issue and handling networks with heterophily.

Original languageEnglish
Title of host publicationMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages2955-2963
Number of pages9
ISBN (Electronic)9798400701085
DOIs
StatePublished - 26 Oct 2023
Event31st ACM International Conference on Multimedia, MM 2023 - Ottawa, Canada
Duration: 29 Oct 20233 Nov 2023

Publication series

NameMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia

Conference

Conference31st ACM International Conference on Multimedia, MM 2023
Country/TerritoryCanada
CityOttawa
Period29/10/233/11/23

Keywords

  • deep models
  • graph neural networks
  • long short-term memory networks

Fingerprint

Dive into the research topics of 'Long Short-Term Graph Memory Against Class-imbalanced Over-smoothing'. Together they form a unique fingerprint.

Cite this