Learning What Not to Segment: A New Perspective on Few-Shot Segmentation

Chunbo Lang, Gong Cheng, Binfei Tu, Junwei Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

214 Scopus citations

Abstract

Recently few-shot segmentation (FSS) has been extensively developed. Most previous works strive to achieve generalization through the meta-learning framework derived from classification tasks; however, the trained models are biased towards the seen classes instead of being ideally class-agnostic, thus hindering the recognition of new concepts. This paper proposes a fresh and straightforward insight to alleviate the problem. Specifically, we apply an additional branch (base learner) to the conventional FSS model (meta learner) to explicitly identify the targets of base classes, i.e., the regions that do not need to be segmented. Then, the coarse results output by these two learners in parallel are adaptively integrated to yield precise segmentation prediction. Considering the sensitivity of meta learner, we further introduce an adjustment factor to estimate the scene differences between the input image pairs for facilitating the model ensemble forecasting. The substantial performance gains on PASCAL-5i and COCO-20i verify the effectiveness, and surprisingly, our versatile scheme sets a new state-of-the-art even with two plain learners. Moreover, in light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting, i.e., generalized FSS, where the pixels of both base and novel classes are required to be determined. The source code is available at github.com/chunbolang/BAM.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages8047-8057
Number of pages11
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 19 Jun 202224 Jun 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period19/06/2224/06/22

Keywords

  • Deep learning architectures and techniques
  • Segmentation
  • Transfer/low-shot/long-tail learning
  • grouping and shape analysis

Fingerprint

Dive into the research topics of 'Learning What Not to Segment: A New Perspective on Few-Shot Segmentation'. Together they form a unique fingerprint.

Cite this