Learning strictly orthogonal p-order nonnegative Laplacian embedding via smoothed iterative reweighted method

Haoxuan Yang, Kai Liu, Hua Wang, Feiping Nie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Laplacian Embedding (LE) is a powerful method to reveal the intrinsic geometry of high-dimensional data by using graphs. Imposing the orthogonal and nonnegative constraints onto the LE objective has proved to be effective to avoid degenerate and negative solutions, which, though, are challenging to achieve simultaneously because they are nonlinear and nonconvex. In addition, recent studies have shown that using the p-th order of the `2-norm distances in LE can find the best solution for clustering and promote the robustness of the embedding model against outliers, although this makes the optimization objective nonsmooth and difficult to efficiently solve in general. In this work, we study LE that uses the p-th order of the `2-norm distances and satisfies both orthogonal and nonnegative constraints. We introduce a novel smoothed iterative reweighted method to tackle this challenging optimization problem and rigorously analyze its convergence. We demonstrate the effectiveness and potential of our proposed method by extensive empirical studies on both synthetic and real data sets.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4040-4046
Number of pages7
ISBN (Electronic)9780999241141
DOIs
StatePublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Fingerprint

Dive into the research topics of 'Learning strictly orthogonal p-order nonnegative Laplacian embedding via smoothed iterative reweighted method'. Together they form a unique fingerprint.

Cite this