Learning sensor-specific features for hyperspectral images via 3-dimensional convolutional autoencoder

Jingyu Ji, Shaohui Mei, Junhui Hou, Xu Li, Qian Du

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Deep learning techniques have brought in revolutionary achievements for feature learning of images. In this paper, a novel structure of 3-Dimensional Convolutional AutoEncoder (3D-CAE) is proposed for hyperspectral spatial-spectral feature learning, in which the spatial context is considered by constructing a 3-Dimensional input using pixels in a spatial neighborhood. All the parameters involved in the 3D-CAE are trained without the need of labeled training samples such that feature learning is conducted in an unsupervised fashion. Such unsupervised spatial-spectral feature extraction is also extended to different images from the same sensor to learn sensor-specific features. As a result, spatial-spectral features of hyperspectral images are extracted for a specific sensor under an unsupervised manner. Experimental results on several benchmark hyperspectral datasets have demonstrated that our proposed 3D-CAE are very effective in extracting sensor-specific spatial-spectral features and outperform several state-of-the-art deep learning neural networks in classification application.

Original languageEnglish
Title of host publication2017 IEEE International Geoscience and Remote Sensing Symposium
Subtitle of host publicationInternational Cooperation for Global Awareness, IGARSS 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1820-1823
Number of pages4
ISBN (Electronic)9781509049516
DOIs
StatePublished - 1 Dec 2017
Event37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017 - Fort Worth, United States
Duration: 23 Jul 201728 Jul 2017

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2017-July

Conference

Conference37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017
Country/TerritoryUnited States
CityFort Worth
Period23/07/1728/07/17

Keywords

  • convolutional autoencoder
  • deep learning
  • hyperspectral classification

Fingerprint

Dive into the research topics of 'Learning sensor-specific features for hyperspectral images via 3-dimensional convolutional autoencoder'. Together they form a unique fingerprint.

Cite this