Learning robust distance metric with side information via ratio minimization of orthogonally constrained ℓ2,1-norm distances

Kai Liu, Lodewijk Brand, Hua Wang, Feiping Nie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

Metric Learning, which aims at learning a distance metric for a given data set, plays an important role in measuring the distance or similarity between data objects. Due to its broad usefulness, it has attracted a lot of interest in machine learning and related areas in the past few decades. This paper proposes to learn the distance metric from the side information in the forms of must-links and cannot-links. Given the pairwise constraints, our goal is to learn a Mahalanobis distance that minimizes the ratio of the distances of the data pairs in the must-links to those in the cannot-links. Different from many existing papers that use the traditional squared `2-norm distance, we develop a robust model that is less sensitive to data noise or outliers by using the not-squared `2-norm distance. In our objective, the orthonormal constraint is enforced to avoid degenerate solutions. To solve our objective, we have derived an efficient iterative solution algorithm. We have conducted extensive experiments, which demonstrated the superiority of our method over state-of-the-art.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3008-3014
Number of pages7
ISBN (Electronic)9780999241141
StatePublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Fingerprint

Dive into the research topics of 'Learning robust distance metric with side information via ratio minimization of orthogonally constrained ℓ2,1-norm distances'. Together they form a unique fingerprint.

Cite this