Learning by Inertia: Self-supervised Monocular Visual Odometry for Road Vehicles

Chengze Wang, Yuan Yuan, Qi Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In this paper, we present iDVO (inertia-embedded deep visual odometry), a self-supervised learning based monocular visual odometry (VO) for road vehicles. When modelling the geometric consistency within adjacent frames, most deep VO methods ignore the temporal continuity of the camera pose, which results in a very severe jagged fluctuation in the velocity curves. With the observation that road vehicles tend to perform smooth dynamic characteristics in most of the time, we design the inertia loss function to describe the abnormal motion variation, which assists the model to learn the consecutiveness from long-term camera ego-motion. Based on the recurrent convolutional neural network (RCNN) architecture, our method implicitly models the dynamics of road vehicles and the temporal consecutiveness by the extended Long Short-Term Memory (LSTM) block. Furthermore, we develop the dynamic hard-edge mask to handle the non-consistency in fast camera motion by blocking the boundary part and which generates more efficiency in the whole non-consistency mask. The proposed method is evaluated on the KITTI dataset, and the results demonstrate state-of-the-art performance with respect to other monocular deep VO and SLAM approaches.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2252-2256
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Keywords

  • Inertia
  • RCNN
  • Self-supervised Learning
  • Visual Odometry

Fingerprint

Dive into the research topics of 'Learning by Inertia: Self-supervised Monocular Visual Odometry for Road Vehicles'. Together they form a unique fingerprint.

Cite this