K-multiple-means: A multiple-means clustering method with specified K clusters

Feiping Nie, Cheng Long Wang, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

110 Scopus citations

Abstract

In this paper, we make an extension of K-means for the clustering of multiple means. The popular K-means clustering uses only one center to model each class of data. However, the assumption on the shape of the clusters prohibits it to capture the non-convex patterns. Moreover, many categories consist of multiple subclasses which obviously cannot be represented by a single prototype. We propose a K-Multiple-Means (KMM) method to group the data points with multiple sub-cluster means into specified k clusters. Unlike the methods which use the agglomerative strategies, the proposed method formalizes the multiple-means clustering problem as an optimization problem and updates the partitions of m subcluster means and k clusters by an alternating optimization strategy. Notably, the partition of the original data with multiple-means representation is modeled as a bipartite graph partitioning problem with the constrained Laplacian rank. We also show the theoretical analysis of the connection between our method and the K-means clustering. Meanwhile, KMM is linear scaled with respect to n. Experimental results on several synthetic and well-known real-world data sets are conducted to show the effectiveness of the proposed algorithm.

Original languageEnglish
Title of host publicationKDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages959-967
Number of pages9
ISBN (Electronic)9781450362016
DOIs
StatePublished - 25 Jul 2019
Event25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019 - Anchorage, United States
Duration: 4 Aug 20198 Aug 2019

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
Country/TerritoryUnited States
CityAnchorage
Period4/08/198/08/19

Keywords

  • Clustering
  • Graph Laplacian
  • K-means
  • Multiple means

Fingerprint

Dive into the research topics of 'K-multiple-means: A multiple-means clustering method with specified K clusters'. Together they form a unique fingerprint.

Cite this