Investigation of the kinetic model equations

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Currently the Boltzmann equation and its model equations are widely used in numerical predictions for dilute gas flows. The nonlinear integro-differential Boltzmann equation is the fundamental equation in the kinetic theory of dilute monatomic gases. By replacing the nonlinear fivefold collision integral term by a nonlinear relaxation term, its model equations such as the famous Bhatnagar-Gross-Krook (BGK) equation are mathematically simple. Since the computational cost of solving model equations is much less than that of solving the full Boltzmann equation, the model equations are widely used in predicting rarefied flows, multiphase flows, chemical flows, and turbulent flows although their predictions are only qualitatively right for highly nonequilibrium flows in transitional regime. In this paper the differences between the Boltzmann equation and its model equations are investigated aiming at giving guidelines for the further development of kinetic models. By comparing the Boltzmann equation and its model equations using test cases with different nonequilibrium types, two factors (the information held by nonequilibrium moments and the different relaxation rates of high- and low-speed molecules) are found useful for adjusting the behaviors of modeled collision terms in kinetic regime. The usefulness of these two factors are confirmed by a generalized model collision term derived from a mathematical relation between the Boltzmann equation and BGK equation that is also derived in this paper. After the analysis of the difference between the Boltzmann equation and the BGK equation, an attempt at approximating the collision term is proposed.

Original languageEnglish
Article number033306
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume89
Issue number3
DOIs
StatePublished - 12 Mar 2014

Fingerprint

Dive into the research topics of 'Investigation of the kinetic model equations'. Together they form a unique fingerprint.

Cite this