Integrating Static and Dynamic Data for Improved Prediction of Cognitive Declines Using Augmented Genotype-Phenotype Representations

Hoon Seo, Lodewijk Brand, Hua Wang, Feiping Nie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Alzheimer's Disease (AD) is a chronic neurodegenerative disease that causes severe problems in patients' thinking, memory, and behavior. An early diagnosis is crucial to prevent AD progression; to this end, many algorithmic approaches have recently been proposed to predict cognitive decline. However, these predictive models often fail to integrate heterogeneous genetic and neuroimaging biomarkers and struggle to handle missing data. In this work we propose a novel objective function and an associated optimization algorithm to identify cognitive decline related to AD. Our approach is designed to incorporate dynamic neuroimaging data by way of a participant-specific augmentation combined with multimodal data integration aligned via a regression task. Our approach, in order to incorporate additional side-information, utilizes structured regularization techniques popularized in recent AD literature. Armed with the fixed-length vector representation learned from the multimodal dynamic and static modalities, conventional machine learning methods can be used to predict the clinical outcomes associated with AD. Our experimental results show that the proposed augmentation model improves the prediction performance on cognitive assessment scores for a collection of popular machine learning algorithms. The results of our approach are interpreted to validate existing genetic and neuroimaging biomarkers that have been shown to be predictive of cognitive decline.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages522-530
Number of pages9
ISBN (Electronic)9781713835974
DOIs
StatePublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume1

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

Fingerprint

Dive into the research topics of 'Integrating Static and Dynamic Data for Improved Prediction of Cognitive Declines Using Augmented Genotype-Phenotype Representations'. Together they form a unique fingerprint.

Cite this