TY - CHAP
T1 - Insensitive Energetic Materials Containing Two-Dimensional Nanostructures as Building Blocks
AU - Yan, Qi Long
AU - Gozin, Michael
AU - Liu, Pei Jin
AU - He, Guo Qiang
N1 - Publisher Copyright:
© 2019 Elsevier Inc. All rights reserved..
PY - 2018/10/26
Y1 - 2018/10/26
N2 - Two-dimensional (2D) materials are very promising components for making energy storage devices, electronic and optoelectronic systems, light-harvesting systems, nanocatalysts, and myriad other applications. It was recently demonstrated that by using various 2D materials as building blocks, it was possible to prepare novel insensitive energetic materials (EMs), with advanced capabilities of tuning these EMs' properties and performance. The resulting insensitive EMs include nanothermites, energetic metal organic frameworks, and energetic coordination polymers, as well as energetic hybrid composites, all of which are under very active development around the world. In contrast to more traditional organic EMs (such as RDX and HMX), 2D EMs owe their insensitivity to external mechanical and thermal stimuli, and to layered, intercalated, or crystal-coating structures, capable of very effective dissipation of localized disturbances, generated by mechanical impacts or hot spots, generated by heating. Thus we could create a new paradigm in the design of novel insensitive high-performance EMs. In this chapter, the preparation, characteristics, and performance of various types of 2D EMs containing pristine graphene, chemically functionalized graphene, and other nongraphene-based materials are described. The potential application of these novel EMs in solid rocket propulsion and other energetic systems is detailed and summarized.
AB - Two-dimensional (2D) materials are very promising components for making energy storage devices, electronic and optoelectronic systems, light-harvesting systems, nanocatalysts, and myriad other applications. It was recently demonstrated that by using various 2D materials as building blocks, it was possible to prepare novel insensitive energetic materials (EMs), with advanced capabilities of tuning these EMs' properties and performance. The resulting insensitive EMs include nanothermites, energetic metal organic frameworks, and energetic coordination polymers, as well as energetic hybrid composites, all of which are under very active development around the world. In contrast to more traditional organic EMs (such as RDX and HMX), 2D EMs owe their insensitivity to external mechanical and thermal stimuli, and to layered, intercalated, or crystal-coating structures, capable of very effective dissipation of localized disturbances, generated by mechanical impacts or hot spots, generated by heating. Thus we could create a new paradigm in the design of novel insensitive high-performance EMs. In this chapter, the preparation, characteristics, and performance of various types of 2D EMs containing pristine graphene, chemically functionalized graphene, and other nongraphene-based materials are described. The potential application of these novel EMs in solid rocket propulsion and other energetic systems is detailed and summarized.
KW - 2D energetic materials
KW - Explosives
KW - Graphene
KW - Insensitive
KW - MOFs
KW - Propellants
UR - http://www.scopus.com/inward/record.url?scp=85080037423&partnerID=8YFLogxK
U2 - 10.1016/B978-0-12-813908-0.00003-4
DO - 10.1016/B978-0-12-813908-0.00003-4
M3 - 章节
AN - SCOPUS:85080037423
SN - 9780128139080
SP - 81
EP - 111
BT - Nanomaterials in Rocket Propulsion Systems
PB - Elsevier
ER -