Abstract
CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO 2 (CuS/TiO 2 ) at low temperature. CuS/TiO 2 composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO 2 samples. It is found that CuS/TiO 2 photocatalyst, which CuS are loaded on the surface of rutile TiO 2 , exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO 2 or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO 2 by forming heterojunction between CuS and rutile TiO 2 , which is confirmed by photoluminescence (PL) spectra and TEM. Moreover, CuS content has a significant influence on photocatalytic activity and 2 wt% CuS/TiO 2 showed the maximum photocatalytic activity for degradation of MB.
Original language | English |
---|---|
Pages (from-to) | 312-319 |
Number of pages | 8 |
Journal | Applied Surface Science |
Volume | 370 |
DOIs | |
State | Published - 1 May 2016 |
Externally published | Yes |
Keywords
- 4-Chlorophenol
- CuS
- Heterojunction
- Methylene Blue
- Photocatalysis
- TiO