Improving brain tumor segmentation in multi-sequence MR images using cross-sequence MR image generation

Guojing Zhao, Jianpeng Zhang, Yong Xia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Accurate brain tumor segmentation using multi-sequence magnetic resonance (MR) imaging plays a pivotal role in clinical practice and research settings. Despite their prevalence, deep learning-based segmentation methods, which usually use multiple MR sequences as input, still have limited performance, partly due to their insufficient ability to image representation. In this paper, we propose a brain tumor segmentation (BraTSeg) model, which uses cross-sequence MR image generation as a self-supervision tool to improve the segmentation accuracy. This model is an ensemble of three image segmentation and generation (ImgSG) models, which are designed for simultaneous segmentation of brain tumors and generation of T1, T2, and Flair sequences, respectively. We evaluated the proposed BraTSeg model on the BraTS 2019 dataset and achieved an average Dice similarity coefficient (DSC) of 81.93%, 87.80%, and 83.44% in the segmentation of enhancing tumor, whole tumor, and tumor score on the testing set, respectively. Our results suggest that using cross-sequence MR image generation is an effective self-supervision method that can improve the accuracy of brain tumor segmentation and the proposed BraTSeg model can produce satisfactory segmentation of brain tumors and intra-tumor structures.

Original languageEnglish
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Revised Selected Papers
EditorsAlessandro Crimi, Spyridon Bakas
PublisherSpringer
Pages27-36
Number of pages10
ISBN (Print)9783030466428
DOIs
StatePublished - 2020
Event5th International MICCAI Brainlesion Workshop, BrainLes 2019, held in conjunction with the Medical Image Computing for Computer Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 17 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11993 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference5th International MICCAI Brainlesion Workshop, BrainLes 2019, held in conjunction with the Medical Image Computing for Computer Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period17/10/1917/10/19

Keywords

  • Brain tumor segmentation
  • Deep learning
  • MR image generation
  • Multi-sequence MR imaging

Fingerprint

Dive into the research topics of 'Improving brain tumor segmentation in multi-sequence MR images using cross-sequence MR image generation'. Together they form a unique fingerprint.

Cite this