TY - JOUR
T1 - Improvement for Ti3SiC2/Cu joint brazed using composite fillers with abnormal expansion ceramic particulates
AU - Chen, Haiyan
AU - Nai, Xin
AU - Zhao, Shuai
AU - Lu, Decai
AU - Shen, Zhikang
AU - Li, Wenya
AU - Lu, Chenyang
AU - Cao, Jian
N1 - Publisher Copyright:
© 2022 The American Ceramic Society.
PY - 2022/6
Y1 - 2022/6
N2 - Reducing the residual stresses and improving the mechanical strength of large-scale ceramic/metal brazing joints is an important problem that must be solved for its practical engineering application. Using composite filler with solid-state phase transformation ceramic particulates, it is theoretically feasible to relieve the residual stress and improve the mechanical properties of ceramic/metal brazed joints. In this study, Cu mesh, Ag–28Cu–2Ti (wt.%), and yttria-stabilized zirconia (0.6 mol.% YSZ solid-state phase transformation ceramic particulates) composite power fillers were used in the brazing of Ti3SiC2 ceramic and pure copper. The microstructure of joints and YSZ particulates in the interface was investigated and confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM), and transmission electron microscopy (TEM). In addition, the effect of YSZ particulates content on the mechanical properties of joints was investigated and evaluated by the shear strength. The results show that the interfacial phases were mainly Ti5Si3, TiC, TixCu, Ag (s, s), Cu (s, s), and YSZ particulates. Moreover, most of YSZ particulates undergo the solid-state phase transformation from tetragonal zirconia (t-ZrO2) to monoclinic zirconia (m-ZrO2) during the cooling process of brazing. The abnormal volume expansion of the solid-state phase transformation reduced the thermal mismatch between Ti3SiC2 ceramic and filler, thereby reducing the residual stress in the interface of joint. When using composite filler with 6 wt.% YSZ particulates, the shear strength of Ti3SiC2/Cu joint reached the maximum. The maximum average shear strength of the joints was 80.2 MPa, which was about 103.6% more than the joint without YSZ particulates.
AB - Reducing the residual stresses and improving the mechanical strength of large-scale ceramic/metal brazing joints is an important problem that must be solved for its practical engineering application. Using composite filler with solid-state phase transformation ceramic particulates, it is theoretically feasible to relieve the residual stress and improve the mechanical properties of ceramic/metal brazed joints. In this study, Cu mesh, Ag–28Cu–2Ti (wt.%), and yttria-stabilized zirconia (0.6 mol.% YSZ solid-state phase transformation ceramic particulates) composite power fillers were used in the brazing of Ti3SiC2 ceramic and pure copper. The microstructure of joints and YSZ particulates in the interface was investigated and confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (STEM), and transmission electron microscopy (TEM). In addition, the effect of YSZ particulates content on the mechanical properties of joints was investigated and evaluated by the shear strength. The results show that the interfacial phases were mainly Ti5Si3, TiC, TixCu, Ag (s, s), Cu (s, s), and YSZ particulates. Moreover, most of YSZ particulates undergo the solid-state phase transformation from tetragonal zirconia (t-ZrO2) to monoclinic zirconia (m-ZrO2) during the cooling process of brazing. The abnormal volume expansion of the solid-state phase transformation reduced the thermal mismatch between Ti3SiC2 ceramic and filler, thereby reducing the residual stress in the interface of joint. When using composite filler with 6 wt.% YSZ particulates, the shear strength of Ti3SiC2/Cu joint reached the maximum. The maximum average shear strength of the joints was 80.2 MPa, which was about 103.6% more than the joint without YSZ particulates.
KW - brazing
KW - composite fillers
KW - microstructure
KW - residual stress
KW - solid-state phase transformation
UR - http://www.scopus.com/inward/record.url?scp=85124477461&partnerID=8YFLogxK
U2 - 10.1111/jace.18347
DO - 10.1111/jace.18347
M3 - 文章
AN - SCOPUS:85124477461
SN - 0002-7820
VL - 105
SP - 3786
EP - 3796
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 6
ER -