Identifying Differentially Expressed Genes Based on Differentially Expressed Edges

Bolin Chen, Li Gao, Xuequn Shang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Identification of differentially expressed (DE) genes under different experimental conditions is an important task in many microarray-based studies. There are many methods developed to detect DE genes based on either fold-change (FC) strategy or statistical test. However, majority of those methods identify DE genes by calculating the expression values of individual genes, without taking interactions between genes into consideration. In this study, we consider the interaction and importance of genes in the network and believe that the edges in the network also contribute a lot to DE genes. Therefore, we propose three new ideas for calculating the expression values of edges by considering mean expression, minimal expression and partial expression, respectively. Those methods were implemented and evaluated on the microarray data and were compared with existing methods. The results show that the proposed edge-based methods can identify more biologically relevant genes and have high computational efficiency. More importantly, the Min-Edge method outperforms the other methods when feasibility and specificity are considered simultaneously.

Original languageEnglish
Title of host publicationIntelligent Computing Theories and Application - 15th International Conference, ICIC 2019, Proceedings
EditorsDe-Shuang Huang, Kang-Hyun Jo, Zhi-Kai Huang
PublisherSpringer Verlag
Pages105-115
Number of pages11
ISBN (Print)9783030269685
DOIs
StatePublished - 2019
Event15th International Conference on Intelligent Computing, ICIC 2019 - Nanchang, China
Duration: 3 Aug 20196 Aug 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11644 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Conference on Intelligent Computing, ICIC 2019
Country/TerritoryChina
CityNanchang
Period3/08/196/08/19

Keywords

  • Differentially expressed edges
  • Differentially expressed genes
  • Gene expression
  • Microarray data

Fingerprint

Dive into the research topics of 'Identifying Differentially Expressed Genes Based on Differentially Expressed Edges'. Together they form a unique fingerprint.

Cite this