TY - GEN
T1 - Hyperspectral Image Super-Resolution via Self-projected Smooth Prior
AU - Bu, Yuanyang
AU - Zhao, Yongqiang
AU - Chan, Jonathan Cheung Wai
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - High spectral correlations and non-local self-similarities, as two intrinsic characteristics underlying hyperspectral image (HSI), have been widely used in HSI super-resolution. However, existing methods mostly utilize the two intrinsic characteristics separately, which still inadequately exploit spatial and spectral information. To address this issue, in this study, a novel self-projected smooth prior (SPSP) is proposed for the task of HSI super-resolution. SPSP describes that two full-band patches (FBPs) are close to each other and then the corresponding subspace coefficients are also close to each other, namely smooth dependences of clustered FBPs within each group of HSI. Suppose that each group of FBPs extracted from HSI lies in smooth subspace, all FBPs within each group can be regarded as the nodes on an undirected graph, then the underlying smooth subspace structures within each group of HSI are implicitly depicted by capturing the linearly pair-wise correlation between those nodes. Utilizing each group of clustered FBPs as projection basis matrix can adaptively and effectively learn the smooth subspace structures. Besides, different from existing methods exploiting non-local self-similarities with multispectral image, to our knowledge, this work represents the first effort to exploit the non-local self-similarities on its spectral intrinsic dimension of desired HSI. In this way, spectral correlations and non-local self-similarities of HSI are incorporated into a unified paradigm to exploit spectral and spatial information simultaneously. As thus, the well learned SPSP is incorporated into the objective function solved by the alternating direction method of multipliers (ADMM). Experimental results on synthetic and real hyperspectral data demonstrate the superiority of the proposed method.
AB - High spectral correlations and non-local self-similarities, as two intrinsic characteristics underlying hyperspectral image (HSI), have been widely used in HSI super-resolution. However, existing methods mostly utilize the two intrinsic characteristics separately, which still inadequately exploit spatial and spectral information. To address this issue, in this study, a novel self-projected smooth prior (SPSP) is proposed for the task of HSI super-resolution. SPSP describes that two full-band patches (FBPs) are close to each other and then the corresponding subspace coefficients are also close to each other, namely smooth dependences of clustered FBPs within each group of HSI. Suppose that each group of FBPs extracted from HSI lies in smooth subspace, all FBPs within each group can be regarded as the nodes on an undirected graph, then the underlying smooth subspace structures within each group of HSI are implicitly depicted by capturing the linearly pair-wise correlation between those nodes. Utilizing each group of clustered FBPs as projection basis matrix can adaptively and effectively learn the smooth subspace structures. Besides, different from existing methods exploiting non-local self-similarities with multispectral image, to our knowledge, this work represents the first effort to exploit the non-local self-similarities on its spectral intrinsic dimension of desired HSI. In this way, spectral correlations and non-local self-similarities of HSI are incorporated into a unified paradigm to exploit spectral and spatial information simultaneously. As thus, the well learned SPSP is incorporated into the objective function solved by the alternating direction method of multipliers (ADMM). Experimental results on synthetic and real hyperspectral data demonstrate the superiority of the proposed method.
KW - Hyperspectral image
KW - Non-local Self-similarity
KW - Spectral correlation
KW - Super-resolution
UR - http://www.scopus.com/inward/record.url?scp=85093862435&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-60633-6_54
DO - 10.1007/978-3-030-60633-6_54
M3 - 会议稿件
AN - SCOPUS:85093862435
SN - 9783030606329
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 648
EP - 659
BT - Pattern Recognition and Computer Vision - 3rd Chinese Conference, PRCV 2020, Proceedings
A2 - Peng, Yuxin
A2 - Zha, Hongbin
A2 - Liu, Qingshan
A2 - Lu, Huchuan
A2 - Sun, Zhenan
A2 - Liu, Chenglin
A2 - Chen, Xilin
A2 - Yang, Jian
PB - Springer Science and Business Media Deutschland GmbH
T2 - 3rd Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020
Y2 - 16 October 2020 through 18 October 2020
ER -