Hyperspectral classification via spatial context exploration with multi-scale CNN

Zhongqi Tian, Jingyu Ji, Shaohui Mei, Junhui Hou, Shuai Wan, Qian Du

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Spatial context has shown to be very useful in hyperspectral image processing. Existing convolutional neural network (CNN)-based methods for hyperspectral classification explore spatial context by single-scale convolution kernels in 2D or 3D shapes. However, such single-scale convolution may not be capable to explore the complex spatial context in a hyperspectral image. In this paper, we propose a multi-scale CNN, MS-CNN to explore the spatial context in different extents, in which adaptive spatial neighborhood convolution kernels are used to simultaneously extract multiple spectral-spatial features from spatial context of pixels. These features obtained by different spatial kernels are then concatenated and fused for further feature extraction and classification. Experimental results show that the proposed adaptive spatial neighborhood convolution are more effective to explore spatial context than traditional single-scale spatial convolution and the performance of the proposed MS-CNN outperforms several state-of-art CNNs for classification of hyperspectral images.

Original languageEnglish
Title of host publication2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2563-2566
Number of pages4
ISBN (Electronic)9781538671504
DOIs
StatePublished - 31 Oct 2018
Event38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, Spain
Duration: 22 Jul 201827 Jul 2018

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2018-July

Conference

Conference38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Country/TerritorySpain
CityValencia
Period22/07/1827/07/18

Keywords

  • Classification
  • Convolutional neural network
  • Hyperspectral
  • Spatial context

Fingerprint

Dive into the research topics of 'Hyperspectral classification via spatial context exploration with multi-scale CNN'. Together they form a unique fingerprint.

Cite this