TY - GEN
T1 - HyperIDP
T2 - 31st International Conference on Computational Linguistics, COLING 2025
AU - Xu, Haowei
AU - Gao, Chao
AU - Li, Xianghua
AU - Wang, Zhen
N1 - Publisher Copyright:
© 2025 Association for Computational Linguistics.
PY - 2025
Y1 - 2025
N2 - Information diffusion prediction is crucial for understanding how information spreads within social networks, addressing both macroscopic and microscopic prediction tasks. Macroscopic prediction assesses the overall impact of diffusion, while microscopic prediction focuses on identifying the next user likely to be influenced. However, few studies have focused on both scales of diffusion. This paper presents HyperIDP, a novel Hypergraph-based model designed to manage both macroscopic and microscopic Information Diffusion Prediction tasks. The model captures interactions and dynamics of cascades at the macro level with hypergraph neural networks (HGNNs) while integrating social homophily at the micro level. Considering the diverse data distributions across social media platforms, which necessitate extensive tuning of HGNN architectures, a search space is constructed to accommodate diffusion hypergraphs, with optimal architectures derived through differentiable search strategies. Additionally, cooperative-adversarial loss, inspired by multi-task learning, is introduced to ensure that the model can leverage the advantages of the shared representation when handling both tasks, while also avoiding potential conflicts. Experimental results show that the proposed model significantly outperforms baselines.
AB - Information diffusion prediction is crucial for understanding how information spreads within social networks, addressing both macroscopic and microscopic prediction tasks. Macroscopic prediction assesses the overall impact of diffusion, while microscopic prediction focuses on identifying the next user likely to be influenced. However, few studies have focused on both scales of diffusion. This paper presents HyperIDP, a novel Hypergraph-based model designed to manage both macroscopic and microscopic Information Diffusion Prediction tasks. The model captures interactions and dynamics of cascades at the macro level with hypergraph neural networks (HGNNs) while integrating social homophily at the micro level. Considering the diverse data distributions across social media platforms, which necessitate extensive tuning of HGNN architectures, a search space is constructed to accommodate diffusion hypergraphs, with optimal architectures derived through differentiable search strategies. Additionally, cooperative-adversarial loss, inspired by multi-task learning, is introduced to ensure that the model can leverage the advantages of the shared representation when handling both tasks, while also avoiding potential conflicts. Experimental results show that the proposed model significantly outperforms baselines.
UR - http://www.scopus.com/inward/record.url?scp=85218491100&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:85218491100
T3 - Proceedings - International Conference on Computational Linguistics, COLING
SP - 964
EP - 977
BT - Main Conference
A2 - Rambow, Owen
A2 - Wanner, Leo
A2 - Apidianaki, Marianna
A2 - Al-Khalifa, Hend
A2 - Di Eugenio, Barbara
A2 - Schockaert, Steven
PB - Association for Computational Linguistics (ACL)
Y2 - 19 January 2025 through 24 January 2025
ER -