TY - JOUR
T1 - Hyperbolic Neural Collaborative Recommender
AU - Li, Anchen
AU - Yang, Bo
AU - Huo, Huan
AU - Chen, Hongxu
AU - Xu, Guandong
AU - Wang, Zhen
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - Recently, deep learning techniques have yielded immense success on recommender systems. However, one weakness of most deep methods is that, users/items mutual semantic relationships, which are latent in the user-item interactions, are not distilled out explicitly. Moreover, most methods have been primarily focused on representation learning in euclidean geometry. Since recent studies have shown that the bipartite graph structure has the non-euclidean latent anatomy, euclidean embeddings may suffer from a certain degree of distortion. In this work, we present Hyperbolic Neural Collaborative Recommender (HNCR), a deep hyperbolic representation learning method that exploits mutual semantic relationships among users/items for collaborative filtering tasks. HNCR first introduces a neighbor construction strategy to build user and item semantic neighborhoods. Then HNCR develops a framework based on deep learning and hyperbolic geometry to integrate constructed neighborhoods into recommendation. To evaluate our method, we conduct experiments on the four datasets. Experimental results show the superiority of HNCR compared with its euclidean counterpart and state-of-the-art recommendation baselines. The results also indicate that hyperbolic representations can reflect meaningful data insights.
AB - Recently, deep learning techniques have yielded immense success on recommender systems. However, one weakness of most deep methods is that, users/items mutual semantic relationships, which are latent in the user-item interactions, are not distilled out explicitly. Moreover, most methods have been primarily focused on representation learning in euclidean geometry. Since recent studies have shown that the bipartite graph structure has the non-euclidean latent anatomy, euclidean embeddings may suffer from a certain degree of distortion. In this work, we present Hyperbolic Neural Collaborative Recommender (HNCR), a deep hyperbolic representation learning method that exploits mutual semantic relationships among users/items for collaborative filtering tasks. HNCR first introduces a neighbor construction strategy to build user and item semantic neighborhoods. Then HNCR develops a framework based on deep learning and hyperbolic geometry to integrate constructed neighborhoods into recommendation. To evaluate our method, we conduct experiments on the four datasets. Experimental results show the superiority of HNCR compared with its euclidean counterpart and state-of-the-art recommendation baselines. The results also indicate that hyperbolic representations can reflect meaningful data insights.
KW - Collaborative filtering
KW - deep learning
KW - hyperbolic geometry
KW - recommender system
KW - representation learning
UR - http://www.scopus.com/inward/record.url?scp=85141614194&partnerID=8YFLogxK
U2 - 10.1109/TKDE.2022.3221386
DO - 10.1109/TKDE.2022.3221386
M3 - 文章
AN - SCOPUS:85141614194
SN - 1041-4347
VL - 35
SP - 9114
EP - 9127
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
IS - 9
ER -