High wear resistance and strength of Hastelloy X reinforced with TiC fabricated by laser powder bed fusion additive manufacturing

Jun Hu, Xin Lin, Yunlong Hu

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Hastelloy X (HX) alloy as a typical solid solution strengthened nickel-based superalloy, has been widely used in the preparation of hot end components. The microstructure evolution and properties of HX alloy and nano-TiC reinforced HX alloy (TiC/HX) formed by laser powder bed fusion (LPBF) were studied. The results show that adding 3 wt% nano-TiC particles can not only inhibit the formation of cracks, but also effectively improve the dry sliding friction, wear properties and room temperature tensile properties. Nano-TiC particles can significantly promote the competitive growth of dendrites, refine the grains, and reduce the residual thermal stress. In addition, it can significantly improve the shear modulus and tensile strength. Under the same forming parameters, the wear rate of the nano-TiC/HX composite material is 51 % lower than that of the pure HX alloy, only 174.49 μm3/(N·mm). At the same time, the tensile strength of the alloy increased from 708 MPa to 1131 MPa, the yield strength increased from 619 MPa to 842 MPa, and the elongation doubled to 16 %.

Original languageEnglish
Article number159004
JournalApplied Surface Science
Volume648
DOIs
StatePublished - 1 Mar 2024

Keywords

  • Friction and wear
  • Hastelloy X nickel-based superalloy
  • Laser powder bed fusion
  • Microstructure evolution
  • Nano-TiC particles
  • Tensile properties

Fingerprint

Dive into the research topics of 'High wear resistance and strength of Hastelloy X reinforced with TiC fabricated by laser powder bed fusion additive manufacturing'. Together they form a unique fingerprint.

Cite this