High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass

Z. F. Yao, J. C. Qiao, J. M. Pelletier, Y. Yao

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

A systematic study on the thermal properties, deformation behaviors, and thermal workability of Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass (BMG) was conducted in the supercooled liquid region (SLR) with strain rates ranging from 2.5 × 10−4 to 5 × 10−3 s−1. The strain-rate jump experimental results show that the homogeneous deformation behavior transforms from non-Newtonian flow to Newtonian flow with decreasing strain rate as well as elevating temperature. In the framework of the Kissinger and free-volume model, this phenomenon can be explained by the transition state theory. The values of the activation volume and activation energy of the BMG are obtained, which are consistent with other BMGs. The optimum domain for thermal workability of the metallic glass has been located by the power dissipation efficiency map where the power dissipation efficiency is larger than 0.8.

Original languageEnglish
Pages (from-to)4079-4087
Number of pages9
JournalJournal of Materials Science
Volume51
Issue number8
DOIs
StatePublished - 1 Apr 2016

Fingerprint

Dive into the research topics of 'High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass'. Together they form a unique fingerprint.

Cite this