Heavy-to-light electron transition enabling real-time spectra detection of charged particles by a biocompatible semiconductor

Dou Zhao, Ruiling Gao, Wei Cheng, Mengyao Wen, Xinlei Zhang, Tomoyuki Yokota, Paul Sellin, Shengyuan A. Yang, Li Shang, Chongjian Zhou, Takao Someya, Wanqi Jie, Yadong Xu

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The current challenge of wearable/implantable personal dosimeters for medical diagnosis and radiotherapy applications is lack of suitable detector materials possessing both excellent detection performance and biocompatibility. Here, we report a solution-grown biocompatible organic single crystalline semiconductor (OSCS), 4-Hydroxyphenylacetic acid (4HPA), achieving real-time spectral detection of charged particles with single-particle sensitivity. Along in-plane direction, two-dimensional anisotropic 4HPA exhibits a large electron drift velocity of 5 × 105cm s−1 at “radiation-mode” while maintaining a high resistivity of (1.28 ± 0.003) × 1012 Ω·cm at “dark-mode” due to influence of dense π-π overlaps and high-energy L1 level. Therefore, 4HPA detectors exhibit the record spectra detection of charged particles among their organic counterparts, with energy resolution of 36%, (μt)e of (4.91 ± 0.07) × 10−5 cm2 V−1, and detection time down to 3 ms. These detectors also show high X-ray detection sensitivity of 16,612 μC Gyabs−1 cm−3, detection of limit of 20 nGyair s−1, and long-term stability after 690 Gyair irradiation.

Original languageEnglish
Article number1115
JournalNature Communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

Fingerprint

Dive into the research topics of 'Heavy-to-light electron transition enabling real-time spectra detection of charged particles by a biocompatible semiconductor'. Together they form a unique fingerprint.

Cite this