TY - JOUR
T1 - Functionalized Ti3C2Tx-based nanocomposite coatings for anticorrosion and antifouling applications
AU - Wang, Peng
AU - He, Baoluo
AU - Du, Yixuan
AU - Wang, Biwen
AU - Gao, Jingde
AU - Liu, Shujuan
AU - Ye, Qian
AU - Zhou, Feng
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/11/15
Y1 - 2022/11/15
N2 - Marine corrosion and biofouling are a major issue affecting the development of the marine industry. Traditional single-function coatings, such as those that provide either antifouling or anticorrosion, cannot meet the requirements in the current hostile conditions. In our study, block copolymer-functionalized Ti3C2Tx was successful prepared and employed to synthesize a nanocomposite coating with satisfactory antifouling and anticorrosion performances, in which the anticorrosion agent poly(2-mercaptobenzothiazole) (PMBTMA) was first grafted on the Ti3C2Tx surface, after which the antifouling agent poly(3-sulfopropyl methacrylate potassium (PSPMA) was grafted via surface-initiated atom transfer radical polymerization (SI-ATRP), to obtain the block copolymer (PMBTMA-co-PSPMA)-functionalized Ti3C2Tx (abbreviated as TMS). An appropriate corrosion protection and antifouling mechanism in the functionalized Ti3C2Tx-based epoxy nanohybrid coatings is proposed. It is noteworthy that the antibacterial activity of the proposed coating stems from the synergistic bactericidal effect of Ti3C2Tx and 2-mercaptobenzothiazole (MBT). The outstanding antibacterial properties of the TMS and the strong surface hydration of the anionic polymer brushes PSPMA, endow the as-prepared TMS-based nanocomposite coating (TMS/EP) with good antifouling performance (removal of more than 55% of bacteria and removal rate of microalgae up to 71%). More importantly, the TMS/EP has excellent corrosion resistance ability, which is due to the good synergistic anticorrosion barrier effect of Ti3C2Tx nanosheets and the on-demand release of corrosion inhibitor MBT during the corrosion process.
AB - Marine corrosion and biofouling are a major issue affecting the development of the marine industry. Traditional single-function coatings, such as those that provide either antifouling or anticorrosion, cannot meet the requirements in the current hostile conditions. In our study, block copolymer-functionalized Ti3C2Tx was successful prepared and employed to synthesize a nanocomposite coating with satisfactory antifouling and anticorrosion performances, in which the anticorrosion agent poly(2-mercaptobenzothiazole) (PMBTMA) was first grafted on the Ti3C2Tx surface, after which the antifouling agent poly(3-sulfopropyl methacrylate potassium (PSPMA) was grafted via surface-initiated atom transfer radical polymerization (SI-ATRP), to obtain the block copolymer (PMBTMA-co-PSPMA)-functionalized Ti3C2Tx (abbreviated as TMS). An appropriate corrosion protection and antifouling mechanism in the functionalized Ti3C2Tx-based epoxy nanohybrid coatings is proposed. It is noteworthy that the antibacterial activity of the proposed coating stems from the synergistic bactericidal effect of Ti3C2Tx and 2-mercaptobenzothiazole (MBT). The outstanding antibacterial properties of the TMS and the strong surface hydration of the anionic polymer brushes PSPMA, endow the as-prepared TMS-based nanocomposite coating (TMS/EP) with good antifouling performance (removal of more than 55% of bacteria and removal rate of microalgae up to 71%). More importantly, the TMS/EP has excellent corrosion resistance ability, which is due to the good synergistic anticorrosion barrier effect of Ti3C2Tx nanosheets and the on-demand release of corrosion inhibitor MBT during the corrosion process.
KW - Anticorrosion
KW - Antifouling
KW - Controlled release
KW - Functionalized MXene
UR - http://www.scopus.com/inward/record.url?scp=85132693525&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2022.137668
DO - 10.1016/j.cej.2022.137668
M3 - 文章
AN - SCOPUS:85132693525
SN - 1385-8947
VL - 448
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 137668
ER -