FSSC: Federated Learning of Transformer Neural Networks for Semantic Image Communication

Yuna Yan, Xin Zhang, Lixin Li, Wensheng Lin, Rui Li, Wenchi Cheng, Zhu Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, we address the problem of image semantic communication in a multi-user deployment scenario and propose a federated learning (FL) strategy for a Swin Transformer-based semantic communication system (FSSC). Firstly, we demonstrate that the adoption of a Swin Transformer for joint source-channel coding (JSCC) effectively extracts semantic information in the communication system. Next, the FL framework is introduced to collaboratively learn a global model by aggregating local model parameters, rather than directly sharing clients' data. This approach enhances user privacy protection and reduces the workload on the server or mobile edge. Simulation evaluations indicate that our method outperforms the typical JSCC algorithm and traditional separate-based communication algorithms. Particularly after integrating local semantics, the global aggregation model has further increased the Peak Signal-to-Noise Ratio (PSNR) by more than 2dB, thoroughly proving the effectiveness of our algorithm.

Original languageEnglish
Title of host publicationGLOBECOM 2024 - 2024 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1659-1664
Number of pages6
ISBN (Electronic)9798350351255
DOIs
StatePublished - 2024
Event2024 IEEE Global Communications Conference, GLOBECOM 2024 - Cape Town, South Africa
Duration: 8 Dec 202412 Dec 2024

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2024 IEEE Global Communications Conference, GLOBECOM 2024
Country/TerritorySouth Africa
CityCape Town
Period8/12/2412/12/24

Keywords

  • Semantic communication
  • federated learning
  • privacy protection
  • swin Transformer

Fingerprint

Dive into the research topics of 'FSSC: Federated Learning of Transformer Neural Networks for Semantic Image Communication'. Together they form a unique fingerprint.

Cite this