Fluid-Structure Interaction of Circular Cylinder Flow with Bidirectional Splitter Plates

Zhigao Dang, Zhaoyong Mao, Baowei Song, Wenlong Tian

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Flow past a circular cylinder is a classical topic in ocean engineering application, such as the marine riser, oil pipeline, etc. When the ocean current flows around cylinder structures, shedding vortices will appear alternately in the wake of the cylinder at a certain Reynolds number, which is harmful to the service life of ocean engineering structures. Among the abundant active and passive methods of flow control, the splitter plate behind the circular cylinder is a popular choice to improve the flow field of the circular cylinder. It should be noted that the motions of the splitter plate are neglected because most of the present studies treat the splitter plate as rigid body. Therefore, the Fluid-Structure Interaction (FSI) effect between the fluid and the splitter plate is taken into account in the present study. What's more, a new idea with bidirectional splitter plates are proposed to improve the flow field with beneficial effects. Correspondingly, the relationships between the ratios of RMS lift and mean drag coefficients by original circular cylinder with different configurations of the splitter plate are given.

Original languageEnglish
Title of host publication2020 Global Oceans 2020
Subtitle of host publicationSingapore - U.S. Gulf Coast
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728154466
DOIs
StatePublished - 5 Oct 2020
Event2020 Global Oceans: Singapore - U.S. Gulf Coast, OCEANS 2020 - Biloxi, United States
Duration: 5 Oct 202030 Oct 2020

Publication series

Name2020 Global Oceans 2020: Singapore - U.S. Gulf Coast

Conference

Conference2020 Global Oceans: Singapore - U.S. Gulf Coast, OCEANS 2020
Country/TerritoryUnited States
CityBiloxi
Period5/10/2030/10/20

Keywords

  • circular cylinder
  • drag
  • fluid-structure interaction
  • lift
  • splitter plate

Fingerprint

Dive into the research topics of 'Fluid-Structure Interaction of Circular Cylinder Flow with Bidirectional Splitter Plates'. Together they form a unique fingerprint.

Cite this