TY - JOUR
T1 - Fast Multi-View Semi-Supervised Learning with Learned Graph
AU - Zhang, Bin
AU - Qiang, Qianyao
AU - Wang, Fei
AU - Nie, Feiping
N1 - Publisher Copyright:
© 1989-2012 IEEE.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Multi-view semi-supervised learning (SSL) has attracted great attention due to its effectiveness in information utilization of multiple views and labeled and unlabeled data to solve practical problems. However, most existing methods exhibit high computational complexity. Effective integration of the information on different views to achieve enhanced performance remains a challenging task. In this study, we combine an anchor-based approach with multi-view semi-supervised learning to address these problems. A novel multi-view SSL method called fast multi-view SSL (FMSSL) based on learned graph is proposed. Starting from the affinity graphs constructed by using an anchor-based strategy, FMSSL learns an optimal multi-view consensus graph by using feature and label information. The learned graph can jointly consider the relation of multiple views to approximate the manifold structure. The learned graph is then introduced into the SSL model as the weight matrix of a bipartite graph to simultaneously perform separate classification on the original samples and anchors. Accordingly, multi-view SSL can be efficiently performed, and the computational complexity can be significantly reduced. We propose an effective algorithm to optimize the objective function. Extensive experimental results on different real-world datasets demonstrate the effectiveness and efficiency of the proposed algorithm.
AB - Multi-view semi-supervised learning (SSL) has attracted great attention due to its effectiveness in information utilization of multiple views and labeled and unlabeled data to solve practical problems. However, most existing methods exhibit high computational complexity. Effective integration of the information on different views to achieve enhanced performance remains a challenging task. In this study, we combine an anchor-based approach with multi-view semi-supervised learning to address these problems. A novel multi-view SSL method called fast multi-view SSL (FMSSL) based on learned graph is proposed. Starting from the affinity graphs constructed by using an anchor-based strategy, FMSSL learns an optimal multi-view consensus graph by using feature and label information. The learned graph can jointly consider the relation of multiple views to approximate the manifold structure. The learned graph is then introduced into the SSL model as the weight matrix of a bipartite graph to simultaneously perform separate classification on the original samples and anchors. Accordingly, multi-view SSL can be efficiently performed, and the computational complexity can be significantly reduced. We propose an effective algorithm to optimize the objective function. Extensive experimental results on different real-world datasets demonstrate the effectiveness and efficiency of the proposed algorithm.
KW - Anchor-based strategy
KW - Bipartite graph
KW - Computational complexity
KW - Multi-view semi-supervised learning
UR - http://www.scopus.com/inward/record.url?scp=85081317400&partnerID=8YFLogxK
U2 - 10.1109/TKDE.2020.2978844
DO - 10.1109/TKDE.2020.2978844
M3 - 文章
AN - SCOPUS:85081317400
SN - 1041-4347
VL - 34
SP - 286
EP - 299
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
IS - 1
ER -