TY - JOUR
T1 - Fabrication of PEI grafted Fe3O4/SiO2/P(GMA-co-EGDMA) nanoparticle anchored palladium nanocatalyst and its application in Sonogashira cross-coupling reactions
AU - Li, Wei
AU - Jia, Xiangkun
AU - Zhang, Baoliang
AU - Tian, Lei
AU - Li, Xiangjie
AU - Zhang, Hepeng
AU - Zhang, Qiuyu
N1 - Publisher Copyright:
© The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015.
PY - 2015/4/1
Y1 - 2015/4/1
N2 - Novel magnetic Fe3O4/SiO2/P(GMA-co-EGDMA) composite nanoparticles grafted with hyperbranched/linear polyethylenimine ligands were fabricated. Subsequently, nano palladium was effectively anchored on this carrier through complexation between Pd2+ ions and multifunctional organic ligands, then a novel supported Pd nanoparticle catalyst with good dispersion and high loading of Pd nanoparticles was successfully prepared after the following reduction process. Afterwards, the as-prepared supported Pd nanoparticle catalyst was characterized by SEM, TEM, XRD, FTIR, TG and ICP-AES. Ultimately, the catalytic performance of the supported Pd nanoparticle catalyst was investigated by catalysing the Sonogashira cross-coupling reaction between aryl halides and arylacetylene. Research shows that the novel supported Pd nanoparticle catalyst exhibits very superior catalytic activity in catalysing the Sonogashira cross-coupling reaction between aryl halides and arylacetylene, even in the absence of the cocatalyst (CuI), and the side reaction producing the by-product (1,3-diyne) can be inhibited effectively. In addition, this supported Pd nanoparticle catalyst exhibits stable recovery and high catalytic activity, for it can be effectively reused 8 times without obvious loss of catalytic activity. Furthermore, the yields of the target products of the Sonogashira cross-coupling reaction between iodobenzene and phenylacetylene, 3-aminophenylacetylene and 4-(ethynyl)phthalic anhydride can reach approximately 79%, 78% and 95% after this novel supported Pd nanoparticle catalyst has been used eight times, respectively.
AB - Novel magnetic Fe3O4/SiO2/P(GMA-co-EGDMA) composite nanoparticles grafted with hyperbranched/linear polyethylenimine ligands were fabricated. Subsequently, nano palladium was effectively anchored on this carrier through complexation between Pd2+ ions and multifunctional organic ligands, then a novel supported Pd nanoparticle catalyst with good dispersion and high loading of Pd nanoparticles was successfully prepared after the following reduction process. Afterwards, the as-prepared supported Pd nanoparticle catalyst was characterized by SEM, TEM, XRD, FTIR, TG and ICP-AES. Ultimately, the catalytic performance of the supported Pd nanoparticle catalyst was investigated by catalysing the Sonogashira cross-coupling reaction between aryl halides and arylacetylene. Research shows that the novel supported Pd nanoparticle catalyst exhibits very superior catalytic activity in catalysing the Sonogashira cross-coupling reaction between aryl halides and arylacetylene, even in the absence of the cocatalyst (CuI), and the side reaction producing the by-product (1,3-diyne) can be inhibited effectively. In addition, this supported Pd nanoparticle catalyst exhibits stable recovery and high catalytic activity, for it can be effectively reused 8 times without obvious loss of catalytic activity. Furthermore, the yields of the target products of the Sonogashira cross-coupling reaction between iodobenzene and phenylacetylene, 3-aminophenylacetylene and 4-(ethynyl)phthalic anhydride can reach approximately 79%, 78% and 95% after this novel supported Pd nanoparticle catalyst has been used eight times, respectively.
UR - http://www.scopus.com/inward/record.url?scp=84927163386&partnerID=8YFLogxK
U2 - 10.1039/c4nj02117g
DO - 10.1039/c4nj02117g
M3 - 文章
AN - SCOPUS:84927163386
SN - 1144-0546
VL - 39
SP - 2925
EP - 2934
JO - New Journal of Chemistry
JF - New Journal of Chemistry
IS - 4
ER -