Experimental study on film cooling effectiveness of blade with chevron shaped holes under wake influence

Ji Chen Li, Hui Ren Zhu, Da Wei Chen, Dao En Zhou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Gas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by Pressure Sensitive Paint (PSP) technique. The test blade has 5 rows of chevron film holes on the pressure side, 3 rows of cylindrical film holes on the leading edge and 3 rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12 and 0.36) and three mass flux ratios (MFR1, MFR2 and MFR3). The results show that the increase of mass flux ratio leads a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.

Original languageEnglish
Title of host publicationHeat Transfer
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884171
DOIs
StatePublished - 2020
EventASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020 - Virtual, Online
Duration: 21 Sep 202025 Sep 2020

Publication series

NameProceedings of the ASME Turbo Expo
Volume7B-2020

Conference

ConferenceASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020
CityVirtual, Online
Period21/09/2025/09/20

Keywords

  • Chevron shaped holes
  • Film cooling effectiveness
  • Pressure Sensitive Paint technique
  • Wake

Fingerprint

Dive into the research topics of 'Experimental study on film cooling effectiveness of blade with chevron shaped holes under wake influence'. Together they form a unique fingerprint.

Cite this