TY - JOUR
T1 - Energy harvesting from flow-induced vibration of a low-mass square cylinder with different incidence angles
AU - Han, Peng
AU - Huang, Qiaogao
AU - Pan, Guang
AU - Wang, Wei
AU - Zhang, Tianqi
AU - Qin, Denghui
N1 - Publisher Copyright:
© 2021 Author(s).
PY - 2021/2/1
Y1 - 2021/2/1
N2 - This numerical study investigates the flow-induced vibration responses and energy harvesting characteristics of a low-mass square oscillator. We first test three typical incidence angles of α = 0°, 22.5°, and 45° with reduced velocities Ur ranging from 3.8 to 26. The most interesting phenomenon is that large-amplitude vibrations can be generated at high reduced velocities, regardless of the angle α. We show that this is because of the following mechanisms: (i) For α = 0°, galloping occurs, resulting in high-amplitude and low-frequency vibrations; (ii) for α = 45°, the cylinder undergoes vortex-induced vibrations (VIVs) without the high-amplitude galloping instability. The unsteady vortex shedding effects are enhanced by a very low mass ratio, leading to "VIV forever"in the tested range of Ur with high-level amplitudes; and (iii) for α = 22.5°, the oscillations in the high-Ur range include both VIV and galloping components. Thus, the large amplitude is caused by the galloping instability and enhanced vortex-shedding effects. Due to the existence of large-amplitude vibrations, the low-mass square cylinder demonstrates the potential and necessary robustness for energy harvesting applications. Overall, α = 45° is the most suitable arrangement for the conversion of power. To further improve the efficiency, we test a 45° cylinder under damping ratios ζ ranging from 0.01 to 0.7. The results indicate that the energy harvesting characteristics are sensitive to the damping ratio when ζ < 0.3. Of all the tested cases, ζ = 0.7 provides the highest average efficiency.
AB - This numerical study investigates the flow-induced vibration responses and energy harvesting characteristics of a low-mass square oscillator. We first test three typical incidence angles of α = 0°, 22.5°, and 45° with reduced velocities Ur ranging from 3.8 to 26. The most interesting phenomenon is that large-amplitude vibrations can be generated at high reduced velocities, regardless of the angle α. We show that this is because of the following mechanisms: (i) For α = 0°, galloping occurs, resulting in high-amplitude and low-frequency vibrations; (ii) for α = 45°, the cylinder undergoes vortex-induced vibrations (VIVs) without the high-amplitude galloping instability. The unsteady vortex shedding effects are enhanced by a very low mass ratio, leading to "VIV forever"in the tested range of Ur with high-level amplitudes; and (iii) for α = 22.5°, the oscillations in the high-Ur range include both VIV and galloping components. Thus, the large amplitude is caused by the galloping instability and enhanced vortex-shedding effects. Due to the existence of large-amplitude vibrations, the low-mass square cylinder demonstrates the potential and necessary robustness for energy harvesting applications. Overall, α = 45° is the most suitable arrangement for the conversion of power. To further improve the efficiency, we test a 45° cylinder under damping ratios ζ ranging from 0.01 to 0.7. The results indicate that the energy harvesting characteristics are sensitive to the damping ratio when ζ < 0.3. Of all the tested cases, ζ = 0.7 provides the highest average efficiency.
UR - http://www.scopus.com/inward/record.url?scp=85101475469&partnerID=8YFLogxK
U2 - 10.1063/5.0037071
DO - 10.1063/5.0037071
M3 - 文章
AN - SCOPUS:85101475469
SN - 2158-3226
VL - 11
JO - AIP Advances
JF - AIP Advances
IS - 2
M1 - 025126
ER -