Abstract
In this work, Al-Fe-Cr quasicrystal reinforced Al matrix composite was in-situ prepared by using selective laser melting from powder mixture of Al-Cu-Fe-Cr quasicrystal and pure Al. The effect of selective post-aging treatment on microstructure and mechanical properties were determined with focus on the metastable phases. The microstructural analysis, which was determined by X-ray diffraction and scanning electron microscopy, indicates that the Al-based intermetallic is precipitated from supersaturated α-Al after the aging process. Moreover, the compression tests were performed on the samples in form of dense and lattice structures (50% porosity). The elastic modules of dense and lattice structural samples reduce from 21.3 GPa and 4.4–14.6 GPa and 3.6 GPa by using a low cooling-rated aging process. After aging process, the compressive deformation behavior of dense part changes from elastic-plastic-fracture mode to elastic-plastic-densification mode. On the other hand, the failure mechanism of lattice structural sample changes from rapid-single-stage to slow-double-stage with an improvement of the strain at failure.
Original language | English |
---|---|
Pages (from-to) | 934-941 |
Number of pages | 8 |
Journal | Wear |
Volume | 426-427 |
DOIs | |
State | Published - 30 Apr 2019 |
Keywords
- Compression
- Heat treatment
- Metal matrix composite
- Quasicrystal
- Selective laser melting