TY - GEN
T1 - Dual-Channel Learning Framework for Drug-Drug Interaction Prediction via Relation-Aware Heterogeneous Graph Transformer
AU - Su, Xiaorui
AU - Hu, Pengwei
AU - You, Zhu Hong
AU - Yu, Philip S.
AU - Hu, Lun
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Identifying novel drug-drug interactions (DDIs) is a crucial task in pharmacology, as the interference between pharmacological substances can pose serious medical risks. In recent years, several network-based techniques have emerged for predicting DDIs. However, they primarily focus on local structures within DDI-related networks, often overlooking the significance of indirect connections between pairwise drug nodes from a global perspective. Additionally, effectively handling heterogeneous information present in both biomedical knowledge graphs and drug molecular graphs remains a challenge for improved performance of DDI prediction. To address these limitations, we propose a Transformer-based relatIon-aware Graph rEpresentation leaRning framework (TIGER) for DDI prediction. TIGER leverages the Transformer architecture to effectively exploit the structure of heterogeneous graph, which allows it direct learning of long dependencies and high-order structures. Furthermore, TIGER incorporates a relation-aware self-attention mechanism, capturing a diverse range of semantic relations that exist between pairs of nodes in heterogeneous graph. In addition to these advancements, TIGER enhances predictive accuracy by modeling DDI prediction task using a dual-channel network, where drug molecular graph and biomedical knowledge graph are fed into two respective channels. By incorporating embeddings obtained at graph and node levels, TIGER can benefit from structural properties of drugs as well as rich contextual information provided by biomedical knowledge graph. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of TIGER in DDI prediction. Furthermore, case studies highlight its ability to provide a deeper understanding of underlying mechanisms of DDIs.
AB - Identifying novel drug-drug interactions (DDIs) is a crucial task in pharmacology, as the interference between pharmacological substances can pose serious medical risks. In recent years, several network-based techniques have emerged for predicting DDIs. However, they primarily focus on local structures within DDI-related networks, often overlooking the significance of indirect connections between pairwise drug nodes from a global perspective. Additionally, effectively handling heterogeneous information present in both biomedical knowledge graphs and drug molecular graphs remains a challenge for improved performance of DDI prediction. To address these limitations, we propose a Transformer-based relatIon-aware Graph rEpresentation leaRning framework (TIGER) for DDI prediction. TIGER leverages the Transformer architecture to effectively exploit the structure of heterogeneous graph, which allows it direct learning of long dependencies and high-order structures. Furthermore, TIGER incorporates a relation-aware self-attention mechanism, capturing a diverse range of semantic relations that exist between pairs of nodes in heterogeneous graph. In addition to these advancements, TIGER enhances predictive accuracy by modeling DDI prediction task using a dual-channel network, where drug molecular graph and biomedical knowledge graph are fed into two respective channels. By incorporating embeddings obtained at graph and node levels, TIGER can benefit from structural properties of drugs as well as rich contextual information provided by biomedical knowledge graph. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of TIGER in DDI prediction. Furthermore, case studies highlight its ability to provide a deeper understanding of underlying mechanisms of DDIs.
UR - http://www.scopus.com/inward/record.url?scp=85189305229&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i1.27777
DO - 10.1609/aaai.v38i1.27777
M3 - 会议稿件
AN - SCOPUS:85189305229
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 249
EP - 256
BT - Technical Tracks 14
A2 - Wooldridge, Michael
A2 - Dy, Jennifer
A2 - Natarajan, Sriraam
PB - Association for the Advancement of Artificial Intelligence
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -