Distance (Signless) Laplacian Eigenvalues of k-uniform Hypergraphs

Xiangxiang Liu, Ligong Wang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The distance (signless) Laplacian eigenvalues of a connected hypergraph are the eigenvalues of its distance (signless) Laplacian matrix. For all n-vertex k-uniform hypertrees, we determine the k-uniform hypertree with minimum second largest distance (signless) Laplacian eigenvalue. For all n-vertex k-uniform unicyclic hyper-graphs, we obtain the k-uniform unicyclic hypergraph with minimum largest distance (signless) Laplacian eigenvalue, and the k-uniform unicyclic hypergraph with minimum second largest distance Laplacian eigenvalue.

Original languageEnglish
Pages (from-to)1093-1111
Number of pages19
JournalTaiwanese Journal of Mathematics
Volume26
Issue number6
DOIs
StatePublished - Dec 2022

Keywords

  • distance (signless) Laplacian eigenvalue
  • k-uniform hypertree
  • k-uniform unicyclic hypergraph

Cite this