Discriminatively embedded K-means for multi-view clustering

Jinglin Xu, Junwei Han, Feiping Nie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

140 Scopus citations

Abstract

In real world applications, more and more data, for example, image/video data, are high dimensional and repre-sented by multiple views which describe different perspectives of the data. Efficiently clustering such data is a challenge. To address this problem, this paper proposes a novel multi-view clustering method called Discriminatively Embedded K-Means (DEKM), which embeds the synchronous learning of multiple discriminative subspaces into multi-view K-Means clustering to construct a unified framework, and adaptively control the intercoordinations between these subspaces simultaneously. In this framework, we firstly design a weighted multi-view Linear Discriminant Analysis (LDA), and then develop an unsupervised optimization scheme to alternatively learn the common clustering indicator, multiple discriminative subspaces and weights for heterogeneous features with convergence. Comprehensive evaluations on three benchmark datasets and comparisons with several state-of-the-art multi-view clustering algorithms demonstrate the superiority of the proposed work.

Original languageEnglish
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages5356-5364
Number of pages9
ISBN (Electronic)9781467388504
DOIs
StatePublished - 9 Dec 2016
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: 26 Jun 20161 Jul 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period26/06/161/07/16

Fingerprint

Dive into the research topics of 'Discriminatively embedded K-means for multi-view clustering'. Together they form a unique fingerprint.

Cite this