Abstract
In this paper, a micromechanical pitch-tunable grating with the capability of working in both reflective and transmissive modes is developed by using the silicon-on-glass (SOG) process. At a voltage of 65 V, the grating period is measured to increase by 4.62%. A simple optical experiment is performed to demonstrate how the proposed grating works in both modes. Then, experiments to measure the change of the diffraction angle versus driving voltage in both reflective and transmissive modes are designed and carried out utilizing an area-arrayed charge-coupled device (CCD), and the results are in good agreement with the theoretical calculation. Discussions on the structural configuration and diffraction efficiency of the proposed grating are presented. The grating presented provides better flexibility in the design and development of application systems.
Original language | English |
---|---|
Article number | 065002 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 20 |
Issue number | 6 |
DOIs | |
State | Published - 2010 |