Detailed Surface Geometry and Albedo Recovery from RGB-D Video under Natural Illumination

Xinxin Zuo, Sen Wang, Jiangbin Zheng, Ruigang Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

In this paper we present a novel approach for depth map enhancement from an RGB-D video sequence. The basic idea is to exploit the photometric information in the color sequence. Instead of making any assumption about surface albedo or controlled object motion and lighting, we use the lighting variations introduced by casual object movement. We are effectively calculating photometric stereo from a moving object under natural illuminations. The key technical challenge is to establish correspondences over the entire image set. We therefore develop a lighting insensitive robust pixel matching technique that out-performs optical flow method in presence of lighting variations. In addition we present an expectation-maximization framework to recover the surface normal and albedo simultaneously, without any regularization term. We have validated our method on both synthetic and real datasets to show its superior performance on both surface details recovery and intrinsic decomposition.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3152-3161
Number of pages10
ISBN (Electronic)9781538610329
DOIs
StatePublished - 22 Dec 2017
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: 22 Oct 201729 Oct 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Conference

Conference16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period22/10/1729/10/17

Fingerprint

Dive into the research topics of 'Detailed Surface Geometry and Albedo Recovery from RGB-D Video under Natural Illumination'. Together they form a unique fingerprint.

Cite this