Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation

Lei Zhang, Rui Bai, Jin Lin, Jun Bu, Zhenpeng Liu, Siying An, Zhihong Wei, Jian Zhang

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Metal-free catalysts offer a desirable alternative to traditional metal-based electrocatalysts. However, metal-free catalysts, featuring defined active sites, rarely show activities as promising as metal-based materials. Here we report 2-thiolimidazole as an efficient metal-free catalyst for selective electrocatalytic hydrogenation of acetylene into ethylene. Under alkaline conditions, the sulfhydryl and imino groups of 2-thiolimidazole are spontaneously deprotonated into dianions. Deprotonation thus enriches the negative charges of pyridinic N sites in 2-thiolimidazole to enhance the adsorption of electrophilic acetylene through the σ-configuration. Ethylene partial current densities show a volcano relationship with the negative charges of the pyridinic N sites in various imidazole derivatives. Consequently, the deprotonated 2-thiolimidazole exhibits an ethylene partial current density and faradaic efficiency competitive with metal-based catalysts like Cu and Pd. This work highlights the tunability and promising potential of metal-free molecules in electrocatalysis. (Figure presented.)

Original languageEnglish
Pages (from-to)893-900
Number of pages8
JournalNature Chemistry
Volume16
Issue number6
DOIs
StatePublished - Jun 2024

Fingerprint

Dive into the research topics of 'Deprotonated 2-thiolimidazole serves as a metal-free electrocatalyst for selective acetylene hydrogenation'. Together they form a unique fingerprint.

Cite this