Deep segmentation-emendation model for gland instance segmentation

Yutong Xie, Hao Lu, Jianpeng Zhang, Chunhua Shen, Yong Xia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

36 Scopus citations

Abstract

Accurate and automated gland instance segmentation on histology microscopy images can assist pathologists to diagnose the malignancy degree of colorectal adenocarcinoma. To address this problem, many deep convolutional neural network (DCNN) based methods have been proposed, most of which aim to generate better segmentation by improving the model structure and loss function. Few of them, however, focus on further emendating the inferred predictions, thus missing a chance to refine the obtained segmentation results. In this paper, we propose the deep segmentation-emendation (DSE) model for gland instance segmentation. This model consists of a segmentation network (Seg-Net) and an emendation network (Eme-Net). The Seg-Net is dedicated to generating segmentation results, and the Eme-Net learns to predict the inconsistency between the ground truth and the segmentation results generated by Seg-Net. The predictions made by Eme-Net can in turn be used to refine the segmentation result. We evaluated our DSE model against five recent deep learning models on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset and against two deep learning models on the colorectal adenocarcinoma (CRAG) dataset. Our results indicate that using Eme-Net results in significant improvement in segmentation accuracy, and the proposed DSE model is able to substantially outperform all the rest models in gland instance segmentation on both datasets.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages469-477
Number of pages9
ISBN (Print)9783030322380
DOIs
StatePublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11764 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1917/10/19

Fingerprint

Dive into the research topics of 'Deep segmentation-emendation model for gland instance segmentation'. Together they form a unique fingerprint.

Cite this